In this work, we explore the use of the one-particle reduced density matrix (1RDM) to streamline energy measurements of chemical systems on quantum computers, particularly within the variational quantum eigensolver (VQE) framework. This approach leverages the existence of an exact energy functional of the 1RDM, enabling a reduction in both the number of expectation values to measure and the number of circuits to execute, thereby optimizing quantum resource usage. Specifically, sampling the 1RDM involves measuring only [Formula: see text] elements, which is significantly fewer than the [Formula: see text] required for the Hamiltonian's expectation value ⟨