Learning Neural Free-Energy Functionals with Pair-Correlation Matching.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jacobus Dijkman, Marjolein Dijkstra, Bernd Ensing, Jan-Willem van de Meent, René van Roij, Max Welling

Ngôn ngữ: eng

Ký hiệu phân loại: 808.8 Collections of literary texts from more than two literatures

Thông tin xuất bản: United States : Physical review letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 474445

The intrinsic Helmholtz free-energy functional, the centerpiece of classical density functional theory, is at best only known approximately for 3D systems. Here we introduce a method for learning a neural-network approximation of this functional by exclusively training on a dataset of radial distribution functions, circumventing the need to sample costly heterogeneous density profiles in a wide variety of external potentials. For a supercritical Lennard-Jones system with planar symmetry, we demonstrate that the learned neural free-energy functional accurately predicts inhomogeneous density profiles under various complex external potentials obtained from simulations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH