Computational flow cytometry immunophenotyping at diagnosis is unable to predict relapse in childhood B-cell Acute Lymphoblastic Leukemia.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Cristina Blázquez Goñi, Teresa Caballero Velázquez, Ana Castillo Robleda, Salvador Chulián, José Luis Fuster Soler, Eva Gálvez de la Villa, María Victoria Martínez Sánchez, Álvaro Martínez-Rubio, Alfredo Minguela Puras, Águeda Molinos Quintana, Ana Niño-López, Víctor M Pérez-García, Rocío Picón-González, Manuel Ramírez Orellana, Juan F Rodríguez Gutiérrez, María Rosa

Ngôn ngữ: eng

Ký hiệu phân loại: 616.99419 Other diseases

Thông tin xuất bản: United States : Computers in biology and medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 474874

B-cell Acute Lymphoblastic Leukemia is the most prevalent form of childhood cancer, with approximately 15% of patients undergoing relapse after initial treatment. Further advancements depend on novel therapies and more precise risk stratification criteria. In the context of computational flow cytometry and machine learning, this paper aims to explore the potential prognostic value of flow cytometry data at diagnosis, a relatively unexplored direction for relapse prediction in this disease. To this end, we collected a dataset of 252 patients from three hospitals and implemented a comprehensive pipeline for multicenter data integration, feature extraction, and patient classification, comparing the results with existing algorithms from the literature. The analysis revealed no significant differences in immunophenotypic patterns between relapse and non-relapse patients and suggests the need for alternative approaches to handle flow cytometry data in relapse prediction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH