Banking customer churn prediction using Random Forest based on SMOTE and ADASYN approach=Banking customer churn prediction using Random Forest based on SMOTE and ADASYN approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thanh Cong Tran

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Phát triển và Hội nhập, 2024

Mô tả vật lý: tr.86-91

Bộ sưu tập: Metadata

ID: 483862

 Customer Churn is now becoming a significant problem in the banking sector. It is necessary to seek solutions to predict the rate of customer churn in banks
  however, the dataset for customer churn prediction in banks is imbalanced. In this paper, Random Forest (RF) based on two popular resampling techniques, named SMOTE and ADASYN, are used to obtain a banking customer churn prediction model. A wide range of metrics, including Accuracy, Recall, Precision, Specificity, F1 score, Mathews correlation coefficient, and ROC-AUC, are used to comprehensively evaluate the prediction model. Through the experimental results, the values of Accuracy and ROC-AUC of the RF model based on SMOTE and ADASYN indicate positive results. Moreover, this paper also shows feature importance in the dataset based on the RF algorithm.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH