Japanese encephalitis (JE) is a central nervous system disease caused by the Japanese encephalitis virus (JEV), resulting in high morbidity and mortality, especially in Asia. This review summarizes the current understanding of the JEV infection cycle, including virus attachment and entry, genome replication, viral protein translation, and virus particle assembly and release. The roles of host factors and viral proteins in these processes are discussed. Furthermore, the latest advancements in JE vaccine research are emphasized, including the development of attenuated vaccine SA14-14-2, inactivated mouse brain-derived vaccine, inactivated cell culture vaccine, and chimeric attenuated vaccine. The efficacy and safety of these candidate vaccines and ongoing efforts to enhance their immunogenicity are also reviewed. A comprehensive understanding of the molecular mechanisms of JEV infection and advancements in vaccine research is crucial for the development of effective strategies for JE control and prevention.