Quantum coherence effects (QCEs), arising from the interference of wave-like amplitudes, are crucial in controlling the electron transfer function of molecular systems. Here, we report a coherence phenomenon associated with charge separation (CS) in a range of Pt (II) cis-acetylide donor-acceptor-donor (D-A-D) systems, where the photogenerated Pt (III) center acts as an acceptor connecting two (R)phenothiazine (R = H or tBu) donors. Femtosecond transient absorption spectroscopy revealed that CS rates in D-A-D systems with double CS paths were accelerated by 4-8 times compared to their donor-acceptor (D-A) counterparts with a single path. An enhancement factor of 2-3 in electronic coupling, within the context of interference between CS paths, is derived, providing a clear signature of QCEs. This enchantment in CS processes closely correlates with the strength of coupling between donors. This study highlights the significant impact of QCEs on the photophysical properties of molecular systems and offers insights into charge and energy transport mechanisms in both natural and artificial systems.