Machine Learning of Two-Electron Reduced Density Matrices for Many-Body Problems.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luis H Delgado-Granados, David A Mazziotti, LeeAnn M Sager-Smith, Kristina Trifonova

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: United States : The journal of physical chemistry letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 488470

We present a novel machine learning algorithm for the many-electron problem, predicting the convex combination of two-electron reduced density matrices (2-RDMs)─obtained from upper- and lower-bound energy calculations─that closely approximates the exact energy. In contrast to other recently developed approaches based on the wave function or one-electron density, our 2-RDM machine-learning approach predicts energies and properties without steep scaling or functional approximation. As conjectured by Preskill and co-workers, a small amount of data in a physics-based machine learning algorithm─in this case, information about the RDMs and their violation of selected higher-order
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH