Renji endoscopic submucosal dissection video data set for early gastric cancer.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tang Cao, Jinnan Chen, Chunjiang Gu, Xiaobo Li, Zhao Li, Dahong Qian, Yiming Song, Jinneng Wang, Liuyi Yang, Qingwei Zhang, Xiangning Zhang, Zhengjie Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: England : Scientific data , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 49017

In recent years, the progress of artificial intelligence has greatly advanced computer-assisted intervention, surgical learning, and postoperative surgical video analysis techniques, greatly improving the skill levels of surgeons and overall outcomes. Deep learning based endoscopic surgery phase recognition has a very high dependency on large-scale datasets and annotations. This study introduces the Renji endoscopic submucosal dissection (ESD) video dataset for early gastric cancer (EGC), comprising 20 ESD endoscopic videos and 66,656 phase recognition annotations jointly annotated by three endoscopists. To the best of our knowledge, this is the first publicly available ESD dataset for the treatment of EGC, and we believe this work will contribute to the standardization of ESD dataset construction. The dataset and annotations are publicly available in Figshare.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH