Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging, both experimentally and computationally. In this paper, we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from molecular dynamics simulation data. Second, we selected data points through interpolation in the learned latent space to rapidly identify novel synthetic conformations with sophisticated and large-scale side chains and backbone arrangements. Third, with the highly dynamic amyloid-β