Cho G là đồ thị có n đỉnh. Giả sử với mỗi đỉnh v của G, tồn tại một danh sách L(v) gồm k màu, sao cho có duy nhất một tô màu cho đồ thị G từ các danh sách màu này, khi đó G được gọi là đồ thị duy nhất k-tô màu danh sách. Đồ thị G được gọi là đồ thị tách cực nếu tồn tại phân hoạch V = I È K sao cho đồ thị con của G cảm sinh trên I là đồ thị rỗng và đồ thị con của G cảm sinh trên K là đồ thị đầy đủ. Khái niệm đồ thị tách cực được định nghĩa bởi Foldes và Hammer (1977). Các đồ thị này được nghiên cứu nhiều trong lý thuyết đồ thị. Bài báo này sẽ nghiên cứu tính chất của đồ thị tách cực đầy đủ khi nó là duy nhất k-tô màu danh sách.