Integrated metabolomics and transcriptomics reveal the potential of hydroxy-alpha-sanshool in alleviating insulin resistance.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhuqi Chen, Tingyuan Ren, Huanhuan Tian, Mingfen Wang, Pan Yang, Chunlin Zhang, Yuping Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 553.453 Tin

Thông tin xuất bản: England : Molecular medicine (Cambridge, Mass.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 494752

Hydroxy-alpha-sanshool (HAS) has attracted attention because of its various biological activities, such as hypoglycemic, hypolipidemic, and antioxidant activities. In this study, we investigated the effects of HAS on insulin resistance (IR) and its mechanism. HAS reduced fasting blood glucose (FBG), promoted insulin (INS) secretion, significantly decreased levels of interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1), and increased the IL-2 level in serum of IR model mice. HAS regulated the mRNA levels of protein kinase B (Akt), B-cell lymphoma extra-large (Bcl-xL), stearoyl-CoA desaturase-1 (SCD1), nuclear factor kappa B (NF-κB), and eukaryotic translation initiation factor 4E (eIF4E). Additionally, differentially abundant metabolites in IR model mice treated with HAS were involved in these signaling pathways including prion disease, choline metabolism in cancer, regulation of lipolysis in adipocytes and the pentose phosphate pathway and positively regulated betaine abundance. In conclusion, HAS activated the phosphatidylinositol-3 kinase (PI3K)/Akt insulin and NF-κB signaling pathways to maintain glucose homeostasis and regulate IR.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH