Dumplings are the favorite quick-frozen food for people in many countries. However, the formation and recrystallization of ice crystals damage the quality of dumpling wrappers during storage. Research has shown that proteins and polysaccharides can improve the quality of frozen dough and that the Maillard reaction can improve the functional properties of proteins and polysaccharides. Therefore, the effects of glycosylated protein between potato protein and xanthan gum (PXM) on the overall changes in dumpling wrappers during freeze-thaw cycles (FT) were studied in this study. The results showed that the addition of PXM (1 %) slowed the deterioration of texture and rheological properties and reduced the cooking loss rate and freezable water content of dumpling wrappers during FT, thus improving the texture quality of dumpling wrappers. Moreover, the addition of PXM delayed the changes in the contents of free sulfhydryl (SH) and disulfide (SS) bonds during storage, weakening the damage to the secondary structure and network structure of the protein. The reason for this difference may be that protein glycosylation significantly increases the zeta potential (13.5 %), surface hydrophobicity (63.9 %), emulsifying activity (192.6 %) and emulsification stability (116.7 %) of potato protein (PP). These results suggest that the application of the glycosylated protein provides a potentially feasible approach to improve the quality of frozen dumpling.