Fatigue behavior of implant-supported cantilevered prostheses in recently introduced CAD-CAM polymers: An in vitro study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Samir Abou-Ayash, Gülce Çakmak, Doğu Ömür Dede, Mustafa Borga Dönmez, Mehmet Esad Güven, Burak Yilmaz

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : The Journal of prosthetic dentistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 495242

 STATEMENT OF PROBLEM: Cantilevered complete arch implant-supported prostheses are commonly fabricated from zirconia and more recently from strength gradient zirconia. Different polymer-based materials indicated for definitive fixed prostheses that could be used with additive or subtractive manufacturing have also been marketed recently. However, knowledge on the long-term fatigue behavior of cantilevered implant-supported prostheses made from these polymer-based materials and strength gradient zirconia is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the fatigue behavior of implant-supported cantilevered prostheses of recently introduced computer-aided design and computer-aided manufacturing polymers and zirconia. MATERIAL AND METHODS: A master standard tessellation language file of a 9×11×20-mm specimen with a titanium base (Ti-base) space that represented an implant-supported cantilevered prosthesis was used to fabricate specimens from additively manufactured interim resin (AM), polymethyl methacrylate (SM-PM), nanographene-reinforced polymethyl methacrylate (SM-GR), high-impact polymer composite resin (SM-CR), and strength gradient zirconia (SM-ZR) (n=10). Each specimen was prepared by following the respective manufacturer's recommendations, and Ti-base abutments were cemented with an autopolymerizing luting composite resin. After cementation, the specimens were mounted in a mastication simulator and subjected to 1.2 million loading cycles under 100 N at 1.5 Hz
  surviving specimens were subjected to another 1.2 million loading cycles under 200 N at 1.5 Hz. The load was applied to the cantilever extension, 12-mm from the clamp of the mastication simulator. The Kaplan-Meier survival analysis and Cox proportional hazards model were used to evaluate the data (α=.05). RESULTS: Significant differences in survival rate and hazard ratio were observed among materials (P<
 .001). Among tested materials, SM-ZR had the highest and AM had the lowest survival rate (P≤.031). All materials had a significantly higher hazard ratio than SM-ZR (P≤.011) in the increasing order of SM-GR, SM-PM, SM-CR, and AM. CONCLUSIONS: SM-ZR had the highest survival rate with no failed specimens. Even though most of the tested polymer-based materials failed during cyclic loading, these failures were commonly observed during the second 1.2 million loading cycles with 200 N. All materials had a higher hazard ratio than SM-ZR.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH