Smooth muscle cells (SMCs) phenotype has successfully conserved in the 3D printable GH-ASG bio-inks composed of silanized acrylic graphene oxide nanosheets as a crosslinker (APStriol@GO) comprising of 3-acryloyloxypropyl silanetriol (APStriol) and graphene oxide (GO) reinforced in the hybrid hydrogel consist of methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) to develop a photocurable hybrid novel bio-ink (GelMA/HAMA/APStriol@GO) as a component for rabbit adipose-derived stem cells (rADSCs) differentiated SMCs inducing functionalized material in situ. Hybrid GH-ASG hydrogels were evaluated for various physiochemical parameters and chemical modifications. The GH-ASG4 (GelMA/HAMA/APStriol@GO-1 %) bioink exhibited optimal reactive oxygen species scavenging potential, and hemostasis was shown to enhance the viability of rADSCs. Additionally, the morphology and nucleus count for differentiated SMCs were analyzed employing TRAP staining. Moreover, the contractile SMCs phenotype was determined at the transcript level by implementing quantitative RT-PCR using SMCs-specific gene markers (α-SMA and SM-MHC). The protein level of gene expression was assessed through Immunocytochemistry and western blot analysis using SMC-specific antibodies (α-SMA and SM-MHC). GH-ASG4 bio-ink was used for 3D printed tubular and disk scaffold fabrication through extrusion bioprinting with improved biocompatibility, processibility, and higher cell proliferation throughout scaffolds to mimic the SMCs extracellular matrix, crucial for smooth muscle regeneration.