Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited. Here we show that DA degrades iron storage protein ferritin in astroglial cells involving lysosomal proteolysis. Lysosomal ferritinophagy is mainly associated with macroautophagy
however, we revealed the involvement of chaperone-mediated autophagy (CMA) in DA-induced ferritin degradation. In CMA, cytosolic proteins containing a specific pentapeptide motif bind with HSC70 to be transported to lysosome mediated by LAMP2A. We identified the conserved pentapeptide motif in ferritin-H (Ft-H), mutations of which resulted loss of its interaction with HSC70. Pharmacological inhibitors of HSC70 or LAMP2/2A knockdown blocks DA-induced Ft-H degradation. DA also induces cytosolic cargo NCOA4 for ferritinophagy. We further reveal that DA promotes cathepsin B to lysis ferritin within the lysosome. Inhibitor of cathepsin B, knocking down of LAMP2, or HSC70 inhibitor attenuate DA-induced elevated mitochondrial iron level. Our results establish a direct role of DA on astroglial iron homeostasis and novel involvement of CMA in ferritin degradation in response to a biological stimulus. These results also may help in better understanding iron dyshomeostasis and mitochondrial dysfunction reported in PD.