Bisphenol F (BPF) has become a new risk factor for male semen quality, but its specific mechanism is still unclear. Therefore, this study explored the potential mechanism of BPF affecting male semen quality from the perspective of ferroptosis and m6A RNA methylation. In vivo experiments showed that BPF destroyed the structure of seminiferous tubules, reduced the layers of spermatogenic cells, and reduced semen quality in mice. Moreover, BPF reduced cell viability and induced ferroptosis in GC-2 cells in vitro. Meanwhile, BPF inhibited the expression of fat mass and obesity-associated gene (FTO). Therefore, we constructed differential expression model of FTO and detected key indicators of ferroptosis such as Fe