Huntingtin plays an essential role in the adult hippocampus.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jessica C Barron, Jacqueline Blundell, Samantha J Carew, Laura J Dawson, Mackenzie C Grace, Craig S Moore, Firoozeh Nafar, Matthew P Parsons, Katelyn C Ryan, Kelsie A Senior

Ngôn ngữ: eng

Ký hiệu phân loại: 374.22 Groups in adult education

Thông tin xuất bản: United States : Neurobiology of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 496900

 The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway
  many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis. At the synaptic level, we identified a marked reduction in presynaptic terminals 1-2 months following wtHTT loss
  this was contrasted by an increased density of postsynaptic mushroom spines and larger amplitudes of spontaneous excitatory postsynaptic currents, indicative of disrupted synaptic homeostasis. Furthermore, intrinsic neuronal excitability was significantly diminished in CA1 pyramidal neurons lacking wtHTT, and we observed a complete loss of NMDA receptor-dependent long-term potentiation. Unexpectedly, synapse density returned to control levels 6-8 months following wtHTT loss, despite the ongoing presence of macroscopic morphological abnormalities, altered anxiety-related behaviors and clear impairments in spatial learning and memory. Overall, these findings uncover a previously unrecognized role of wtHTT as a critical regulator of hippocampal function in the mature brain, and highlight the hippocampus as a potentially vulnerable region to the adverse effects of non-selective HTT reduction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH