Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks (part II).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shingo Asano, Yasushi Kato, Masao Miyazaki, Kenta Tsuda, Mitsunori Tsuda

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of the neurological sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 497254

Neural networks (NNs) possess the capability to learn complex data relationships, recognize inherent patterns by emulating human brain functions, and generate predictions based on novel data. We conducted deep learning utilizing an NN to differentiate between Parkinson's disease (PD) and the parkinsonian variant (MSA-P) of multiple system atrophy (MSA). The distinction between PD and MSA-P in the early stages presents significant challenges. Considering the recently reported heterogeneity and random distribution of lesions in MSA, we performed an analysis employing an NN with voxel-based morphometry data from the entire brain as input variables. The NN's accuracy in distinguishing MSA-P from PD demonstrates sufficient practicality for clinical application.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH