CircFak promotes mechanical force-induced osteogenesis via FAK/AKT phosphorylation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huilin Cheng, Jinsong Li, Defeng Liang, Yingjuan Lu, Juanyi Shi, Zhihui Wen, Fan Wu, Shule Xie

Ngôn ngữ: eng

Ký hiệu phân loại: 944.029 Reigns of Francis II, Charles IX, Henry III, 1559—1589

Thông tin xuất bản: England : Journal of dentistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 497289

OBJECTIVES: Orthodontic treatment is widely applied for addressing orofacial skeletal deformities, with the remodeling of the alveolar bone under mechanical force being the key factor. FAK is essential for cellular response to mechanical force. However, the function of circFak has never been reported. In this study, the microarrays showed that circFak may affect osteogenesis under mechanical force. We aimed to verify the effect of circFak in force-related bone remodeling and investigate the underlying mechanisms. METHODS: Arraystar microarrays were used to identify differentially expressed circRNAs and microRNAs in response to mechanical stress. The subcellular distribution of circFak was analyzed via RT‒qPCR and FISH. ALP and ARS staining assays were performed to investigate the effects of circFak on osteogenesis. RNA sequencing, bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation were accomplished to discover the molecular mechanisms of circFak. AAV-sh-circFak mouse models with tooth movements were established. The role of circFak under mechanical force in vivo was assessed via immunofluorescence and micro-CT analyses. RESULTS: CircFak expression was significantly upregulated under mechanical force. Osteogenic capacity of osteoblasts was positively correlated with the level of circFak. CircFak promoted mechanical force-induced osteogenesis through miR-425-5p/Ccn3 pathway, and further stimulated the phosphorylation of its parental sourced protein FAK. Our murine models showed that AAV-mediated circFak silencing suppressed osteogenesis. CONCLUSION: CircFak could obviously promote osteogenesis under mechanical force and may possess ability to become a novel biomarker for prognosis of orthodontic treatments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH