Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mt), is one of the deadliest infectious diseases. The rise of multidrug-resistant strains represents a major public health threat, requiring new therapeutic options. Bacterial aminoacyl-tRNA synthetases (aaRS) have been shown to be highly promising drug targets, including for TB treatment. These enzymes play an essential role in translating the DNA gene code into protein sequence by attaching specific amino acid to their cognate tRNAs. They have multiple binding sites that can be targeted for inhibitor discovery: amino acid binding pocket, ATP binding pocket, tRNA binding site and an editing domain. Recently we reported several high-resolution structures of M. tuberculosis phenylalanyl-tRNA synthetase (MtPheRS) complexed with tRNA