Intelligent leaching of Zn and Mn from spent disposable batteries to avoid traditional optimizing experiments.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bo Niu, E Shanshan, Boyang Xu, Zhenming Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 006.3 Artificial intelligence

Thông tin xuất bản: United States : Waste management (New York, N.Y.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 497689

Spent disposable Zn-Mn and Zn-C batteries are important resources for recycling. Acid leaching is the crucial step in the hydrometallurgy process for recycling Zn and Mn from these spent Zn-based batteries. However, to obtain the optimal leaching efficiency, the uncontrollable components in waste feed and various leaching parameters cause numerous replicated optimal experiments, increasing the recovery cost and environmental risks. To solve the issues, we employed machine learning (ML) techniques to construct models to predict Zn and Mn leaching from spent disposable batteries without optimizing experiments. Among four ML algorithms tested, the extreme gradient boosting demonstrated superior predictive performance, achieving an R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH