Các mô hình tài chính thực tế như tỷ lệ lãi suất ngắn hạn, log- độ biến động trong mô hình Heston được mô hình hóa rất tốt bởi chuyển động Brown phân thứ. Điều này đặt ra câu hỏi về việc phát triển dạng phân thứ tổng quất cho các quá trình cổ điển như quá trình Cox- Ingersoll- Ross, quá trình Bessel. Trong bài báo này chúng tôi quan tâm tới quá trình Bessel phân thứ (Mishura, Yurchenko-Tytarenko, 2018). Cụ thể hơn, chúng tôi xét dạng tổng quát của quá trình Bessel phân thứ. Chúng tôi chứng minh sự tồn tại và duy nhất nghiệm dương của phương trình. Hơn nữa, chúng tôi đưa ra đánh giá cho chuẩn supremum của nghiệm.The real financial models such as the short term interest rates, the log-volatility in Heston model are very well modeled by a fractional Brownian motion. This fact raises a question of developing a fractional generalization of the classical processes such as Cox - Ingersoll - Ross process, Bessel process. In this paper, we are interested in the fractional Bessel process (Mishura, Yurchenko-Tytarenko, 2018). More precisely, we consider a generalization of the fractional Bessel type process. We prove that the equation has a unique positive solution. Moreover, we study the supremum norm of the solution.