Reaction optimization plays an essential role in chemical research and industrial production. To explore a large reaction system, a practical issue is how to reduce the heavy experimental load for finding the high-yield conditions. In this paper, we present an efficient machine learning tool called "RS-Coreset", where the key idea is to take advantage of deep representation learning techniques to guide an interactive procedure for representing the full reaction space. Our proposed tool only uses small-scale data, say 2.5% to 5% of the instances, to predict the yields of the reaction space. We validate the performance on three public datasets and achieve state-of-the-art results. Moreover, we apply this tool to assist the realistic exploration of the Lewis base-boryl radicals enabled dechlorinative coupling reactions in our lab. The tool can help us to effectively predict the yields and even discover several feasible reaction combinations that were overlooked in previous articles.