Proteogenomic analysis reveals adaptive strategies for alleviating the consequences of aneuploidy in cancer.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karen Barthel, Amelie Becker, Jan-Eric Bökenkamp, Leah Johnson, Kristina Keuper, Markus Räschle, Stefan Redel, Zuzana Storchová, Angela Wieland

Ngôn ngữ: eng

Ký hiệu phân loại: 627.12 Rivers and streams

Thông tin xuất bản: England : The EMBO journal , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 50201

Aneuploidy is prevalent in cancer and associates with fitness advantage and poor patient prognosis. Yet, experimentally induced aneuploidy initially leads to adverse effects and impaired proliferation, suggesting that cancer cells must adapt to aneuploidy. We performed in vitro evolution of cells with extra chromosomes and obtained cell lines with improved proliferation and gene expression changes congruent with changes in aneuploid cancers. Integrated analysis of cancer multi-omics data and model cells revealed increased expression of DNA replicative and repair factors, reduced genomic instability, and reduced lysosomal degradation. We identified E2F4 and FOXM1 as transcription factors strongly associated with adaptation to aneuploidy in vitro and in cancers and validated this finding. The adaptation to aneuploidy also coincided with specific copy number aberrations that correlate with poor patient prognosis. Chromosomal engineering mimicking these aberrations improved aneuploid cell proliferation, while loss of previously present extra chromosomes impaired it. The identified common adaptation strategies suggest replication stress, genomic instability, and lysosomal stress as common liabilities of aneuploid cancers.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH