The epithelial-mesenchymal transition (EMT) is a biological process whereby epithelial cells are transformed into cells with a mesenchymal phenotype. The transcription factor, X-box binding protein 1 splicing variant (XBP1s) is a key regulator of the endoplasmic reticulum stress response (ERS)
but the function of XBP1s in the endometritis-induced EMT process remains unclear. Here we found that uterine tissues from goats with endometritis exhibited an EMT phenotype, with a significant decrease in the epithelial cell polarity marker E-cadherin and a significant increase in the mesenchymal markers N-cadherin and vimentin. We also found that sustained LPS treatment induced EMT in goat endometrial epithelial cells (gEECs), along with ERS and XBP1s overexpression. XBP1s KO significantly inhibited LPS-induced EMT and migration in gEECs, while XBP1s overexpression showed the opposite result. CUT & Tag experiments performed on XBP1s revealed that MAP3K2 was a downstream target gene for XBP1s regulation. We also found that expression of MAP3K2 was positively correlated with XBP1s expression in uterine tissues of goats with endometritis and in gEECs. Assays for dual luciferase reporter and molecular docking indicated that XBP1s protein regulated the transcription of MAP3K2 by modulating promoter activity. The knockdown of MAP3K2 expression significantly inhibited the migration and EMT of gEECs. XBP1s and MAP3K2 significantly promoted phosphorylation of p38 and ERK, activating the MAPK/ERK pathway. Treatment with the MAPK/ERK inhibitor, PD98059, reversed the effects of XBP1s and MAP3K2 overexpression on LPS-induced EMT. The MAPK/ERK activator, DHC, reversed the effects of XBP1s KO and MAP3K2 KD on EMT.