Based on the classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique, Galerkin method and an approximate three-term solution of deflection taking into account the nonlinear buckling shape is chosen, the governing nonlinear dynamic equations of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure is established in part 1. In this study, the nonlinear dynamic responses are obtained by fourth order Runge-Kutta method and the nonlinear dynamic buckling behavior of stiffened functionally graded shells under linear-time loading 'is determined by according to Budiansky-Roth criterion. Numerical results are investigated to reveal effects of stiffener, input factors on the vibration and nonlinear dynamic buckling loads of stiffened functionally graded circular cylindrical shells.