In state-of-the-art optical lattice clocks, beyond-electric-dipole polarizability terms lead to a breakdown of magic wavelength trapping. In this Letter, we report a novel approach to evaluate lattice light shifts, specifically addressing recent discrepancies in the atomic multipolarizability term between experimental techniques and theoretical calculations. We combine imaging and multi-ensemble techniques to evaluate lattice light shift atomic coefficients, leveraging comparisons in a dual-ensemble lattice clock to rapidly evaluate differential frequency shifts. Further, we demonstrate application of a running wave field to probe both the multipolarizability and hyperpolarizability coefficients, establishing a new technique for future lattice light shift evaluations.