Random Survival Forest for Censored Functional Data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Giuseppe Loffredo, Fabrizio Maturo, Elvira Romano

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Statistics in medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 51064

This article introduces a Random Survival Forest (RSF) method for functional data. The focus is specifically on defining a new functional data structure, the Censored Functional Data (CFD), for addressing the challenge of accurately modelling time-to-event data in the presence of censoring and irregular temporal structures. Traditional survival models struggle to incorporate complex functional patterns, making the proposed approach particularly valuable for improving prediction and interpretation. This approach allows for precise modelling of functional survival trajectories, leading to improved interpretation and prediction of survival dynamics across different groups. A medical survival study on the benchmark Sequential Organ Failure Assessment (SOFA) dataset and an extensive simulation study are presented. Results show good performance of the proposed approach, particularly in ranking the importance of predicting variables.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH