Prioritizing effector genes at trait-associated loci using multimodal evidence.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dorret I Boomsma, Christiaan A de Leeuw, Nikki Hubers, Bernardo A P C Maciel, Michael C O'Donovan, Danielle Posthuma, Marijn Schipper, Douglas P Wightman

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Nature genetics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 51078

Genome-wide association studies (GWAS) yield large numbers of genetic loci associated with traits and diseases. Predicting the effector genes that mediate these locus-trait associations remains challenging. Here we present the FLAMES (fine-mapped locus assessment model of effector genes) framework, which predicts the most likely effector gene in a locus. FLAMES creates machine learning predictions from biological data linking single-nucleotide polymorphisms to genes, and then evaluates these scores together with gene-centric evidence of convergence of the GWAS signal in functional networks. We benchmark FLAMES on gene-locus pairs derived by expert curation, rare variant implication and domain knowledge of molecular traits. We demonstrate that combining single-nucleotide-polymorphism-based and convergence-based modalities outperforms prioritization strategies using a single line of evidence. Applying FLAMES, we resolve the FSHB locus in the GWAS for dizygotic twinning and further leverage this framework to find schizophrenia risk genes that converge with rare coding evidence and are relevant in different stages of life.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH