Quzhou Aurantii Fructus Flavonoids Ameliorate Inflammatory Responses, Intestinal Barrier Dysfunction in DSS-Induced Colitis by Modulating PI3K/AKT Signaling Pathway and Gut Microbiome.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiahui Chen, Lijuan Gao, Wenkang Huang, Qin Li, Xiaotong Liu, Xiaoya Pan, Jianhua Qi, Meizi Tian, Haiou Wang, Yiping Ye

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: New Zealand : Journal of inflammation research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 51446

PURPOSE: To explore the protective effect and underlying mechanism of Quzhou Aurantii Fructus flavonoids (QAFF) on Ulcerative colitis (UC). METHODS: The constituents of QAFF were accurately determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The therapeutic impacts of QAFF were assessed in dextran sulfate sodium (DSS)-induced UC mice, focusing on the changes in body weight, disease activity index (DAI), colon length, histological assessment of colonic tissues, levels of pro-inflammatory cytokines, and expression of tight junction proteins. Western blotting confirmed key regulatory proteins within the differential signaling pathways, guided by transcriptome analysis. Additionally, the influence of QAFF on the gut microbiome was explored through 16S ribosomal RNA (rRNA) sequencing. The alterations in endogenous metabolites were detected by untargeted metabolomics, and their potential correlation with intestinal flora was then examined utilizing Spearman correlation analysis. Subsequently, the regulation of gut microbiome by QAFF was validated by fecal microbiota transplantation (FMT). RESULTS: Eleven flavonoids, including Naringin and hesperidin, were initially identified from QAFF. In vivo experiments demonstrated that QAFF effectively ameliorated colitis symptoms, reduced IL-6, IL-1β, and TNF-α levels, enhanced intestinal barrier integrity, and downregulated PI3K/AKT pathway activation. Furthermore, QAFF elevated the levels of beneficial bacteria like CONCLUSION: QAFF could ameliorate inflammatory responses and intestinal barrier dysfunction in DSS-induced UC mice probably by modulating the PI3K/AKT signaling pathway and gut microbiome, offering promising evidence for the therapeutic potential of QAFF in UC treatment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH