Potential drug targets for ovarian cancer identified through Mendelian randomization and colocalization analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hao Lin, Sicong Liu, Yang Shen, Ke Zhang, Quan Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 005.18 +*Microprogramming and microprograms formerly 005.6

Thông tin xuất bản: England : Journal of ovarian research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 516315

 BACKGROUND: The existing drugs for ovarian cancer (OC) are unsatisfactory and thus new drug targets are urgently required. We conducted proteome-wide Mendelian randomization (MR) and colocalization analysis to pinpoint potential targets for OC. METHODS: Data on protein quantitative trait loci (pQTL) for 734 plasma proteins were obtained from large genome-proteome-wide association studies. Genetic associations with OC were derived from the Ovarian Cancer Association Consortium, which included 25,509 cases and 40,941 controls. MR analysis was performed to evaluate the association between the proteins and the OC risk. Colocalization analysis was conducted to check whether the identified proteins and OC shared causal variants. In addition, the phenome-wide MR analysis was performed to clarify protein associations across the phenotype, and drug target databases were examined for target validation. RESULTS: Genetically predicted circulating levels of 44 proteins were associated with OC risk at Benjamini-Hochberg correction. Genetically predicted 17 proteins had evidence of the increased risk of OC (CLEC11A, MFAP2, TYMP, PDIA3, IL1R1, SPINK1, PLAU, DKK2, IL6ST, DLK1, LRRC15, CDON, ANGPTL1, SEMA4D, AKR1A1, TNFAIP6, and FCGR2B)
  27 proteins decreased the risk of OC(SIGLEC9, RARRES1, SPINT3, TMEM132A, HAVCR2, CNTN2, TGFBI, GSTA1, HGFAC, TREML2, GRAMD1C, ASAH2, CPNE1, CCL25, MAPKAPK2, POFUT1, PREP, NTNG1, CA10, CACNA2D3, CA8, MAN1C1, MRC2, IL10RB, RBP4, GP5 and CALCOCO2). Bayesian colocalization demonstrated that GRAMD1C, RBP4, PLAU, PDIA3, MFAP2, POFUT1, MAN1C1 and DKK2 shared the same variant with OC. The phe-MR analyses assessed the side effects of these 44 identified proteins, and the drug target database offered information on both approved and investigational indications. CONCLUSION: This study provides proof of a causal relationship between genetically predicted 44 proteins associated with OC risk, which could serve as promising drug targets for OC.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH