UAS-based MT-YOLO model for detecting missed tassels in hybrid maize detasseling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Liping Chen, Chenchen Ding, Longlong Li, Jiangtao Qi, Yuxin Xie, Ruirui Zhang, Weirong Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Plant methods , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 517430

Accurate detection of missed tassels is crucial for maintaining the purity of hybrid maize seed production. This study introduces the MT-YOLO model, designed to replace or assist manual detection by leveraging deep learning and unmanned aerial systems (UASs). A comprehensive dataset was constructed, informed by an analysis of the agronomic characteristics of missed tassels during the detasseling period, including factors such as tassel visibility, plant height variability, and tassel development stages. The dataset captures diverse tassel images under varying lighting conditions, planting densities, and growth stages, with special attention to early tasseling stages when tassels are partially wrapped in leaves-a critical yet underexplored challenge for accurate detasseling. The MT-YOLO model demonstrates significant improvements in detection metrics, achieving an average precision (AP) of 93.1%, precision of 93.3%, recall of 91.6%, and an F1-score of 92.4%, outperforming Faster R-CNN, SSD, and various YOLO models. Compared to the baseline YOLO v5s, the MT-YOLO model increased recall by 1.1%, precision by 4.9%, and F1-score by 3.0%, while maintaining a detection speed of 124 fps. Field tests further validated its robustness, achieving a mean missed rate of 9.1%. These results highlight the potential of MT-YOLO as a reliable and efficient solution for enhancing detasseling efficiency in hybrid maize seed production.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH