Two-scale convergence analysis and numerical simulation for periodic Kirchhoff plates.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhiwei Huang, Chongren Liu, Chen Wang, Xiaomiao Zeng

Ngôn ngữ: eng

Ký hiệu phân loại: 306.7663 Sexual relations

Thông tin xuất bản: England : Heliyon , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 51760

Homogenization analysis methods provide a high-efficiency tool to address periodic structures. However, the popular Asymptotic Homogenization Method (AHM) cannot be directly applied to the homogenization of periodic plate structures due to less periodicity in the bending deformation direction. In this paper, we propose a two-scale asymptotic analysis technique to cope with the bending problem of periodic thin plates. By ignoring the normal strains along the thickness direction and using the Kirchhoff plate theory, the three-dimensional structure problem is transformed as a two-dimensional periodic plate problem by a fourth-order partial differential equation with periodic coefficients. Besides, the well-posedness analysis of the PDE is verified by the Lax-Milgram theorem, and the reasonability of the two-scale asymptotic expansion solution by the AHM is mathematically verified through the proof of two-scale convergence. Finally, numerical experiments verify the availability and accuracy of the proposed homogenization method for periodic Kirchhoff plates.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH