Intervening Non-Small-Cell Lung Cancer Progression by Cell Membrane Coated Platycodin D via Regulating Hsa-miR-1246/FUT9/GSK3β Pathway.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Keyu Cheng, Yuanyuan Guo, Jiamin Lin, Tianming Lu, Ruogu Qi, Shanshan Wang, Zejuan Xie, Yanlin Xin, Shuyu Zheng, Ziao Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 305.568 +Alienated and excluded classes

Thông tin xuất bản: New Zealand : International journal of nanomedicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 51805

PURPOSE: Metastatic non-small cell lung cancer (NSCLC) remains a global health threat, with patients facing inevitable disease progression despite standard-of-care therapy. Prior studies showed Platycodin D (PD)-induced cell cycle arrest and apoptosis in NSCLC via RNA regulatory network, yet elucidating PD's mechanisms in NSCLC progression is challenging in the real world. METHODS: Biological effects of PD on NSCLC cell lines A549 and PC-9 were assessed through in vitro assays, encompassing apoptosis, proliferation, colony formation, migration and invasion. MicroRNAs (miRNAs) expression was profiled, and their roles were investigated using miRNA mimics or inhibitors. Predicted miRNA targets were validated via dual-luciferase reporter assays and Western blotting following bioinformatic prediction. PD's metastatic inhibitory potential in NSCLC was evaluated in an in vivo lung cancer metastasis model. Furthermore, a homologous cell membrane-based PD delivery system was established to improve the biosafety and efficacy of PD in vivo. RESULTS: Hsa-miR-1246 was upregulated by PD treatment, and functional experiments demonstrated that the miR-1246-mimic enhanced PD's suppressive effects on NSCLC cell proliferation, colony formation, migration, and invasion, while the miR-1246-inhibitor abrogated these effects. Notably, dual-luciferase assays confirmed that hsa-miR-1246 directly targeted the 3' untranslated regions (3' UTRs) of Fucosyltransferase 9 (FUT9), modulating its expression. Moreover, the hsa-miR-1246/FUT9 axis regulated the phosphorylation level and expression of GSK3β protein. In vivo, PD encapsulated in homologous cell membranes mitigated tumor growth and migration in metastatic NSCLC mice with minimal side effects. CONCLUSION: The application of PD prompted an increase in the expression levels of hsa-miR-1246 and a concurrent decrease in FUT9. Importantly, the therapeutic efficacy of PD in vivo was markedly enhanced through homologous cell delivery system. Collectively, this study revealed the potential utility of PD in the treatment of NSCLC progression.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH