Machine learning (ML) techniques to predict breast cancer in imbalanced datasets: a systematic review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Arman Ghavidel, Pilar Pazos

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of cancer survivorship : research and practice , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 52250

Knowledge discovery in databases (KDD) is crucial in analyzing data to extract valuable insights. In medical outcome prediction, KDD is increasingly applied, particularly in diseases with high incidence, mortality, and costs, like cancer. ML techniques can develop more accurate predictive models for cancer patients' clinical outcomes, aiding informed healthcare decision-making. However, cancer prediction modeling faces challenges because of the unbalanced nature of the datasets, where there is a small minority category of patients with a cancer diagnosis compared to a majority category of cancer-free patients. Imbalanced datasets pose statistical hurdles like bias and overfitting when developing accurate prediction models. This systematic review focuses on breast cancer prediction articles published from 2008 to 2023. The objective is to examine ML methods used in three critical steps of KDD: preprocessing, data mining, and interpretation which address the imbalanced data problem in breast cancer prediction. This work synthesizes prior research in ML methods for breast cancer prediction. The findings help identify effective preprocessing strategies, including balancing and feature selection methods, robust predictive models, and evaluation metrics of those models. The study aims to inform healthcare providers and researchers about effective techniques for accurate breast cancer prediction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH