Alpha (8-12 Hz) oscillations and default mode network (DMN) activity dominate the brain's intrinsic activity in the temporal and spatial domains, respectively. They are thought to play crucial roles in the spatiotemporal organization of the complex brain system. Relatedly, both have been implicated, often concurrently, in diverse neuropsychiatric disorders, with accruing electroencephalogram/magnetoencephalogram (EEG/MEG) and functional magnetic resonance imaging (fMRI) data linking these two neural activities both at rest and during key cognitive operations. Prominent theories and extant findings thus converge to suggest a mechanistic relationship between alpha oscillations and the DMN. Here, we leveraged simultaneous EEG-fMRI data acquired before and after alpha-frequency transcranial alternating current stimulation (