This study explores the effects of prenatal co-exposure to alcohol and synthetic cannabinoids on offspring viability, physical development, and neurobehavioral outcomes in young adulthood. The aim is to identify distinct outcomes of co-exposure compared to single-drug exposures and to examine potential sex-specific vulnerabilities in motor coordination and exploratory behaviors. Pregnant C57Bl/6J mice were assigned to one of four treatment groups: Control, Alcohol-exposed, Cannabinoid-exposed, or Alcohol+Cannabinoid-exposed, with drug administration occurring between Gestational Days 12-15. Offspring were first evaluated at birth for survival, physical malformations, and developmental delays. Subsequently, young adult offspring were assessed for motor coordination using rotarod tests and exploratory behavior using open field tests. Our results indicate that alcohol and cannabinoid co-exposure significantly reduced offspring survival and litter sizes compared to controls. Non-viable offspring displayed craniofacial abnormalities, limb malformations, and developmental delays. Behavioral assessments in young adulthood demonstrated that all forms of prenatal drug exposure impaired motor coordination in males, while alcohol and cannabinoid exposures independently produced impairments in females. In the open field test, co-exposed male offspring exhibited reduced center exploration, indicative of anxiety-like behavior. Co-exposed offspring, regardless of sex, demonstrated hyperactivity, characterized by increased speed and distance traveled. Together, these findings underscore the heightened risks associated with prenatal polysubstance exposure, which exacerbates offspring mortality and induces sex-specific neurobehavioral deficits. This study highlights the distinct outcomes associated with prenatal co-exposure, and the need for future research to investigate underlying mechanisms driving these developmental disruptions and sex-specific susceptibilities.