Plans are formulated and refined throughout the period leading up to their execution, ensuring that the appropriate behaviors are enacted at the appropriate times. Although existing evidence suggests that memory circuits convey the passage of time through diverse neuronal responses, it remains unclear whether the neural circuits involved in planning exhibit analogous temporal dynamics. Using publicly available data, we analyzed how activity in the mouse frontal motor cortex evolves during motor planning. Individual neurons exhibited diverse ramping activity throughout a delay interval that preceded a planned movement. The collective activity of these neurons was useful for making temporal predictions that became increasingly precise as the movement time approached. This temporal diversity gave rise to a spectrum of encoding patterns, ranging from stable to dynamic representations of the upcoming movement. Our results indicate that ramping activity unfolds over multiple timescales during motor planning, suggesting a shared mechanism in the brain for processing temporal information related to both memories from the past and plans for the future.