Annotation-free genetic mutation estimation of thyroid cancer using cytological slides from multi-centers.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yimin Guo, Degui Liao, Shuguang Liu, Tian Tang, Shimin Wang, Siping Xiong, Chao Zeng, Wei Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Diagnostic pathology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 532891

Thyroid cancer is the most common form of endocrine malignancy and fine needle aspiration (FNA) cytology is a reliable method for clinical diagnosis. Identification of genetic mutation status has been proved efficient for accurate diagnosis and prognostic risk stratification. In this study, a dataset with thyroid cytological images of 310 indeterminate (TBS3 or 4) and 392 PTC (TBS5 or 6) was collected. We introduced a multimodal cascaded network framework to estimate BARF V600E and RAS mutations directly from thyroid cytological slides. The area under the curve in the external testing set achieved 0.902 ± 0.063 and 0.801 ± 0.137 AUCs for BRAF, and RAS, respectively. The results demonstrated that deep neural networks have the potential in cytologically predicting valuable diagnosis and comprehensive genetic status.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH