Cardiac activity responds dynamically to metabolic demands and neural regulation. However, little is known about this process during pregnancy. Reports show occasional fetal-maternal heart rate couplings, but it has remained unclear whether these couplings extend to more complex oscillatory patterns of the heart rhythm. We developed a framework of time-varying measures of heart rate and rhythm, to test the presence of co-varying patterns in concurrent maternal and fetal measures (late pregnancy dataset, n = 10, and labour dataset, n = 12). These measures were derived from first and second-order Poincaré plots, with the aim to describe changes in short- and long-term rhythmicity, but also the dynamic shifts in acceleration and deceleration of heart rate. We found episodes of maternal-fetal co-varying patterns of cardiac rhythm in all the measures explored, in both datasets (at least 90% of the dataset presented a significant maternal-fetal correlation in each measure, with P <
0.001), with dynamic delays suggesting bilateral interactions at different time scales. We also found that these couplings intensify during labour (test between late pregnancy vs. labour datasets, P <
0.0015 in all second-order Poincaré plot-derived measures). While most literature suggests that the fetal heart responds to maternal breathing patterns or contractions, we propose the possibility that the fetal heart may also have a signalling function in the context of co-regulatory mechanisms and maternal inter-organ interactions. Understanding these complex visceral oscillations in utero may enhance the assessment of a healthy fetal development.