We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions. The EST can manipulate droplets with a wide volume range (500 nL-1 mL), droplets hanging on tilted or even inverted surfaces, multiple droplets in parallel, corrosive droplets, low-surface-tension organic droplets (