A Methionine Allocation Nanoregulator for the Suppression of Cancer Stem Cells and Support to the Immune Cells by Epigenetic Regulation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qinjun Chen, Yun Chen, Hongrui Fan, Mingzhu Fang, Chen Jiang, Chufeng Li, Xuwen Li, Haolin Song, Boyu Su, Tao Sun, Yu Wang, Yuxing Wu, Haoyu You, Zhenhao Zhao, Zheng Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 070.48346 Journalism

Thông tin xuất bản: Germany : Advanced science (Weinheim, Baden-Wurttemberg, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 548107

Epigenetic dysregulation is prevalent in human cancers, affecting gene expression and metabolic patterns to meet the demands of malignant evolution and abnormal epigenetic processes, and resulting in a protumor immune microenvironment. Tumors require a steady supply of methionine for maintaining epigenetic flexibility, which is the only exogenous precursor of methyl donor S-adenosylmethionine for methylation, crucial for their resistance to therapies and survival in a nutrient-deficient microenvironment. Thus, tumor cells upregulate the Lat4 transporter to compete and deprive methionine in the microenvironment, sustaining their malignant phenotypes and also impairing immune cell functions. Addressing this methionine addiction is the key to overcoming drug resistance and improving immune response. Despite the challenge of lacking specific Lat4 inhibitors, an oxaliplatin prodrug crosslinked fluorinated polycation/anti-Lat4 small interfering RNA complex nanoregulator (AS-F-NP) has been designed and developed here. This nanoregulator restricted the greedy methionine uptake of tumor cells by knocking down Lat4, which in turn inhibited the malignant evolution of the tumor while restoring the viability and function of tumor-infiltrating immune cells.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH