Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hongli Chen, Dan Ding, Xin Feng, Shenglu Ji, Changqin Jing, Wenbin Li, Xiafei Li, Xianwei Wang, Yameng Wang, Tuo Yang, Jianshen Yin, Xuewei Zhang, Liang Zhao, Ziwei Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 297.7 Protection and propagation of Islam

Thông tin xuất bản: Germany : Macromolecular bioscience , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 549005

PVA has emerged as a prevalent material for the construction of vascular tissue engineering scaffolds. Nonetheless, the integration of 3D crosslinked polyvinyl alcohol (PVA) scaffolds featuring arginine-glycine-aspartate (RGD) binding remains a rarity in tissue engineering. In the present study, a PVA-4-azidobenzoic acid (AZ)-RGD scaffold is prepared based on cross-linking of two distinct PVA derivatives: one featuring photoreactive azides for ultraviolet (UV)-crosslinking and the other incorporating RGD peptides. The results show that the PVA-AZ-RGD scaffold has good blood compatibility and biomechanical properties, with hydrophilic properties, and a hydrolysis rate of 27.31% at 12 weeks. Notably, the incorporation of RGD peptides significantly bolsters the attachment and proliferation of mesenchymal stem cells (MSCs) on the scaffolds, compared to non-RGD-conjugated controls. Furthermore, RGD conjugation markedly accelerates endothelialization of MSCs following 15 days of endothelial culture. Post-transplantation, the PVA-AZ-RGD scaffold exhibits favorable blood flow patency, minimal immune rejection, promotes endothelialization and smooth muscle cell proliferation, and facilitates the development of extracellular matrix, ultimately contributing to the formation of regenerative artificial blood vessels. These comprehensive findings underscore the promising potential of RGD-integrated, crosslinked PVA scaffolds for applications in vascular tissue engineering.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH