Fluorescent sensing technologies have emerged as powerful tools in analytical science, offering exceptional sensitivity and selectivity for detecting a wide range of analytes. Among the advanced materials driving these technologies, quantum dots (QDs) and metal nanoparticles (MNPs) stand out due to their unique optical and electronic properties. When combined, these materials exhibit synergistic interactions those significantly enhance the fluorescence signals, enable efficient quenching, and offer tunable optical properties. This review explores the various protocols involved in the development, characterization, and performance evaluation of metal-QD composites
typically, metal-enhanced fluorescence (MEF) and Förster resonance energy transfer (FRET). The applications of the materials in the domain of biomedical diagnostics, environmental monitoring, and biosensing have been highlighted. The review also discusses the current challenges and future scope in the field of metal-QD-based fluorescent sensors and their possible transformative impact on next-generation sensing technologies.