ChatGPT-estimated occupational complexity predicts cognitive outcomes and cortical thickness above and beyond socioeconomic status among older adults.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ee-Heok Kua, Rathi Mahendran, Ted Kheng Siang Ng, Junhong Yu

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: Switzerland : GeroScience , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 549240

Many aging cohort studies have collected data on participants' job titles, yet these job titles were seldom analyzed within the cognitive aging context despite their relevance to neurocognition, due to difficulties in analyzing these job titles quantitatively. While it is possible to rate these jobs' occupational complexity (OC) using job classification systems, this can be somewhat labor-intensive and prone to human errors. To this end, we demonstrate a novel and simple method to extract OC ratings from job titles using ChatGPT. Then, we showcased the utility of these ratings in predicting cognitive and structural brain outcomes, especially compared to other socioeconomic status (SES) indicators. Community-dwelling older adults (N = 238, age
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH