Both methyl groups and benzene rings are exceedingly common, and they lie near one another in many chemical situations. DFT calculations are used to gauge the strength of the attractive forces between them, and to better understand the phenomena that underlie this attraction. Methane and benzene are taken as the starting point, and substituents of both electron-withdrawing and donating types are added to each. The interaction energy varies between 1.4 and 5.0 kcal/mol, depending upon the substituents placed on the two groups. The nature of the binding is analyzed via Atoms in Molecules (AIM), Natural Bond Orbital (NBO), Symmetry-Adapted Perturbation Theory (SAPT), nuclear magnetic resonance (NMR) chemical shifts, and electron density shift diagrams. While there is a sizable electrostatic component, it is dispersion that dominates these interactions, particularly the weaker ones. As such, these interactions cannot be categorized unambiguously as either H-bonds or tetrel bonds.