Eliminating the second CT scan of dual-tracer total-body PET/CT via deep learning-based image synthesis and registration.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shuguang Chen, Huaping Gao, Yibo He, Xiaoguang Hou, Yu Lin, Hongcheng Shi, WenXin Tang, Kang Wang, Shuo Wang, Yunzhe Xie, Junjie Yang, Runjun Yang, Haojun Yu, Zhe Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 069.57 Collections of secondary materials

Thông tin xuất bản: Germany : European journal of nuclear medicine and molecular imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 55029

PURPOSE: This study aims to develop and validate a deep learning framework designed to eliminate the second CT scan of dual-tracer total-body PET/CT imaging. METHODS: We retrospectively included three cohorts of 247 patients who underwent dual-tracer total-body PET/CT imaging on two separate days (time interval:1-11 days). Out of these, 167 underwent [ RESULTS: The MAE for whole-body pseudo-ACCT images ranged from 97.64 to 112.59 HU across four tracers. The deep learning-based ASC PET images demonstrated high similarity to the ground-truth PET images. The MAE of SUV for whole-body PET images was 0.06 for [ CONCLUSION: The proposed deep learning framework, combining RegGAN and non-rigid registration, shows promise in reducing CT radiation dose for dual-tracer total-body PET/CT imaging, with successful validation across multiple tracers.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH