Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuichiro Hayashi, Kensaku Mori, Masahiro Oda, Luyang Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: Germany : International journal of computer assisted radiology and surgery , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 55103

PURPOSE: Deep-learning-based supervised CT segmentation relies on fully and densely labeled data, the labeling process of which is time-consuming. In this study, our proposed method aims to improve segmentation performance on CT volumes with limited annotated data by considering category-wise difficulties and distribution. METHODS: We propose a novel confidence-difficulty weight (CDifW) allocation method that considers confidence levels, balancing the training across different categories, influencing the loss function and volume-mixing process for pseudo-label generation. Additionally, we introduce a novel Double-Mix Pseudo-label Framework (DMPF), which strategically selects categories for image blending based on the distribution of voxel-counts per category and the weight of segmentation difficulty. DMPF is designed to enhance the segmentation performance of categories that are challenging to segment. RESULT: Our approach was tested on two commonly used datasets: a Congenital Heart Disease (CHD) dataset and a Beyond-the-Cranial-Vault (BTCV) Abdomen dataset. Compared to the SOTA methods, our approach achieved an improvement of 5.1% and 7.0% in Dice score for the segmentation of difficult-to-segment categories on 5% of the labeled data in CHD and 40% of the labeled data in BTCV, respectively. CONCLUSION: Our method improves segmentation performance in difficult categories within CT volumes by category-wise weights and weight-based mixture augmentation. Our method was validated across multiple datasets and is significant for advancing semi-supervised segmentation tasks in health care. The code is available at https://github.com/MoriLabNU/Double-Mix .
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH