Accelerating Molecular Dynamics with a Graph Neural Network: A Scalable Approach through E(q)C-GNN.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Debaditya Barman, Atish Ghosh, Debasis Maji, Pranab Sarkar

Ngôn ngữ: eng

Ký hiệu phân loại: 620.1074 Engineering mechanics and materials

Thông tin xuất bản: United States : The journal of physical chemistry letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 551444

Ab initio molecular dynamics simulations are an integral part of any electronic structure calculation to access thermal stability and perform non-adiabatic dynamics but are computationally very demanding. To enhance the computational efficiency of crucial ab initio molecular dynamics simulations, in this work, we implemented the graph neural network (GNN)-accelerated predictions for the molecular dynamics simulation of two-dimensional systems with varying atom connectivity. In this work, we developed an equivariant GNN model that employs only the time-evolved AIMD-simulated atomic coordinates for training and successfully predicts the key parameters of stable two-dimensional g-CN, WTe
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH