Hyperbolic multivariate feature learning in higher-order heterogeneous networks for drug-disease prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jianrui Chen, Junjie Huang, Xiujuan Lei, Jiamin Li

Ngôn ngữ: eng

Ký hiệu phân loại: 570.752 Preserving biological specimens

Thông tin xuất bản: Netherlands : Artificial intelligence in medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 551656

 New drug discovery has always been a costly, time-consuming process with a high failure rate. Repurposing existing drugs offers a valuable alternative and reduces the risks associated with developing new drugs. Various experimental methods have been employed to facilitate drug repositioning
  however, associations prediction between drugs and diseases through biological experiments is both expensive and time-consuming. Consequently, it is imperative to develop efficient and highly precise computational methods for predicting these associations. Based on this, we propose a drug-disease associations prediction method based on Hyperbolic Multivariate feature Learning in High-order Heterogeneous Networks for Drug-Disease Prediction, called H
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH